LinkedInYoutubeFacebook

  • English
  • Français

Functional Equations: Theory, Practice and Interactions

Lieu

Hanoi, Vietnam

Dates

12/04/2021 - 23/04/2021

Présentation

A complex number is called algebraic if it is a root of a non-constant polynomial with integer coefficients and is transcendental otherwise. Over recent decades, the transcendental nature of special values of certain arithmetic functions which verify functional equations has been a fascinating branch of Number Theory and attracts an incredible number of work. However, beautiful mysteries remain unsolved.

This CIMPA school aims to familiarize graduate students and young researchers to basic concepts and tools of Differential Galois Theory, Diophantine Geometry, Transcendental Number Theory and introduce them to some beautiful theorems about the transcendence of values of particular functions such as the modular j-function, zeta functions, M-functions.

Three introductory courses and three advanced courses will be given by leading experts in their fields. It will be suitable for motivating participants to gain entry into the theory and to discover some of the cutting-edge research problems in Modern Number Theory.

Langue officielle de l'école : anglais

Responsables administratifs et scientifiques

Duy Tan Nguyen (Institute of Mathematics, Vietnam Academy of Science and Technology, Vietnam, duytan@math.ac.vn)
Tuan Ngo Dac (CNRS et Université Claude Bernard Lyon 1, France, ngodac@math.univ-lyon1.fr)

Comité scientifique

Boris Adamczewski (CNRS and Université Claude Bernard Lyon 1, France)
Bruno Angles (Université de Caen Normandie, France)
Sara Checcoli (Université Grenoble Alpes, France)
Charlotte Hardouin (Université Paul Sabatier Toulouse 3, France)
Tuan Ngo Dac (CNRS and Université Claude Bernard Lyon 1, France)
Tanguy Rivoal (CNRS and Université Grenoble Alpes, France)

Programme scientifique

Cours 1: "Some Topics in Diophantine Geometry", Sara Checcoli (Université Grenoble Alpes, France)
Cours 2: "Galois Theory of Linear Difference Equations and Applications", Charlotte Hardouin (Université Paul Sabatier Toulouse 3, France)
Cours 3: "Introduction to Transcendental Number Theory", Michel Waldschmidt (Université Pierre-et-Marie-Curie, France)
Cours 4: "Mahler's Method and Finite Automata", Boris Adamczewski (CNRS and Université Claude Bernard Lyon 1, France)
Cours 5: "Ax-Lindemann-Weierstrass Theorems and Differential Galois Theory", Guy Casale (Université de Rennes 1, France)
Cours 6: "O-Minimality and Diophantine Applications", Andrei Yafaev (University College London, GR)

Comment participer:

Cette école aura lieu en ligne ou sous format hybride. Vous pouvez donc y participer à distance. Merci d'indiquer dans le formulaire si ceci est une option pour vous.

Pour s'inscrire et candidater à un financement CIMPA, suivre les instructions données ici.

Date limite d'inscription et de candidature : 6 janvier 2021