The notion of duality in physics has a rich history, going back at least as far as the observation that Maxwell’s theory of elctromagnetism is symmetric after swapping electric and magnetic fields. More generally, dualities in physics can provide a way of relating two seemingly very different physical theories via a nontrivial duality transformation. For instance, S-duality in physics provides a way to swap strongly coupled physical theories for weakly coupled ones [MO77], for which we may use perturbative methods to exactly solve the equations governing the system.
2025
New trends and applications around generalized Fokker-Planck operators
New trends and applications around generalized Fokker-Planck operators This 4-weeks scientific program will be oriented around four related topics: 1. Witten and Bismut deformations of Hodge theory on Riemannian manifolds; 2. Persistent homology and Witten Laplacians; 3. Hypoellipticity and polynomes of vector fields; 4. Applications to molecular dynamics algorithms.
Arithmetic geometry of K3 surfaces
The aim of this programme is to break new ground in the arithmetic theory of K3 surfaces and closely related varieties (e.g., Enriques and elliptic surfaces; hyper-Kähler varieties), capitalising on a web of recent advances and conjectural frameworks. Progress on the arithmetic of K3 surfaces will likely have important consequences for more general questions about Shimura varieties, abelian and hyper-Kähler varieties, their rational and algebraic points. The programme consists of 5 weeks of research collaborations (working groups, research seminars) capped off by a one week workshop.
Higher Rank Geometric Structures
L'étude des sous-groupes discrets des groupes de Lie semi-simples est un domaine qui a une longue histoire et qui est en même temps un sujet de recherche très actif. Elle est au cœur de plusieurs domaines, allant de la géométrie différentielle à la théorie des nombres et, depuis la percée de Margulis dans les années 70, elle est intimement liée aux systèmes dynamiques.
Alors que les développements ultérieurs prennent en compte les phénomènes de rigidité, notre programme se concentrera sur les aspects géométriques des groupes discrets flexibles.