Logo CIMPA

Mathematical and Statistical Methods for Data Sciences (reportée à 2022)

Organisateur extérieur

External organizer
Piotr Graczyk
Country external organizer
France
Email external organizer
graczyk@univ-angers.fr

Organisateur local

Local organizer
Bubacarr Bah
Country local organizer
Afrique du Sud
Email local organizer
bubacarr@aims.ac.za

The School aims to introduce students to the mathematical and statistical underpinnings of some of the latest Data Science methods that seek to address the challenge of Big Data analysis. There will be an emphasis on matricial methods both in modelling and in numerical computations. The topics covered will include Randomized Numerical Linear Algebra, Deep Generative Models, Bayesian Nonparametric Models and their Asymptotic Properties, Modern Graphical Models and High- Dimensional Statistics Based on Random Matrix Theory.

The courses will start by introducing randomized numerical linear algebra, deep generative and modern graphical models, fundamental for problems of interest in machine learning and statistical data analysis. For all lectures there will be dedicated exercises with practical problems (in particular with R and/or Python) to be solved by the students under the experts’ guidance.

There will be also be seminars by workshop participants to showcase their works as well as invited talks by Data Science experts in South Africa to expose participants to real world problems being worked on by academics and industry practitioners.

Langue officielle de l'école : anglais

Dates
-
Pays
South Africa
Region
AFRIQUE
Année
2022

Comment participer

Pour s'inscrire et postuler à un financement CIMPA, lisez attentivement les instructions données ici. Si vous savez déjà ce qu'il faut faire, vous pouvez vous rendre sur le site de candidature, créer un compte (si ce n'est pas déjà fait) et postuler à l'école qui vous intéresse. Attention, vous serez redirigé·e vers un autre site.