• English
  • Français

NEW DATES - Hodge Theory and p-adic Hodge Theory


Guanajuato, Mexico


02/08/2021 to 11/08/2021


The courses are introductory to carry research activity in contemporary trends in Hodge Theory and p-adic Hodge Theory given by main actors in each activity: Hodge structures, Hodge-Tate structures, De Rham Cohomology and Betti Cohomology, Torelli type theorems, Abelian Varieties. p-adic numbers, p-adic Galois representations, absolute Galois group of a p-adic field, continuos representations, Fontaine rings and admisible representations, Hodge-Tate representations, étale cohomology as a p-adic Galois representation, Tate module of an elliptic curve, ring of periods, De Rham representations, good reduction and crystalline representations.

Official language of the school: English

Administrative and scientific coordinators

Pedro L. DEL ANGEL R. (CIMAT, Mexico,
Olivier BRINON (Université de Bordeaux, France,

Scientific committee

Olivier BRINON (Université de Bordeaux, France)
Miriam BOCARDO (University of Guadalajara, Mexico)
Rogelio PEREZ-BUENDIA (CIMAT Merida, Mexico)
Genaro HERNANDEZ-MADA (University of Sonora, Mexico)
Martha Dolores GUZMAN-PARTIDA (University of Sonora, Mexico)

Scientific program

Course 1: "Classical Hodge Theory", Jaime HERNANDEZ (CIMAT, Mexico)
Course 2: "p-adic Geometry", Miriam BOCARDO (University of Guadalajara, Mexico)
Course 3: "Étale Cohomology", Felipe ZALDIVAR (Autonomous Metropolitan University (UAM), Mexico)
Course 4: "Height Pairings of 1-Motives", Carolina RIVERA-ARREDONDO (University of Milan, Italy)
Course 5: "Cristalline Representations", Genaro HERNANDEZ-MADA (University of Sonora, Mexico)
Course 6: "P-adic Galois Representations", Rogelio Pérez-Buendía (CIMAT, Mexico)

How to participate: